Question 1 - Mathematical Induction

Use the principle of Mathematical Induction to show that $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ for all $n\in\mathbb{N}.$
Question 2 - Mathematical Induction
Use Mathematical Induction to prove that $3^{2n} - 1$ is divisible by 8 for all natural numbers n .
Question 3 -
Complex Numbers:
Let a be the last digit of your student number. For the next three parts of this question, you can use 1 decimal precision whenever necessary.
Write the complex numbers $z_1 = 1 + (a+1)i$ and $z_2 = -\frac{1}{2} + (a+2)i$ in polar form, and locate them in the complex (Argand) plane. In your diagram indicate the real axis, the imaginary axis, the modulus and arguments of both complex numbers
Question 4 -

Complex Numbers:

Let a be the last digit of your student number. For the next three parts of this question, you can use 1 decimal precision whenever necessary.

Use the previously obtained z_1 and z_2 to compute $z_1^2 \cdot z_2^3$.

SOWISO 2021 1

Question 5 -
Complex Numbers:
Let a be the last digit of your student number. For the next three parts of this question, you can use 1 decimal precision whenever necessary.
Use the previously obtained z_1 and z_2 to compute $\frac{z_1^3}{z_2^4}$.
Question 6 - Complex Numbers
Question 6 - Complex Numbers Sketch in the complex plane all solutions of the equation $ z+2\mathrm{i} = z-3\mathrm{i} $.
Sketch in the complex plane all solutions of the equation $ z + 2i = z - 3i $.
Sketch in the complex plane all solutions of the equation $ z + 2i = z - 3i $.
Sketch in the complex plane all solutions of the equation $ z + 2i = z - 3i $.
Sketch in the complex plane all solutions of the equation $ z+2\mathrm{i} = z-3\mathrm{i} .$
Sketch in the complex plane all solutions of the equation $ z+2\mathrm{i} = z-3\mathrm{i} $. Question 7 - Limits Prove using the ε - δ definition of limit that $\lim_{x\to -1}(3x+1)=-2$.
Sketch in the complex plane all solutions of the equation $ z+2\mathrm{i} = z-3\mathrm{i} $. Question 7 - Limits Prove using the ε - δ definition of limit that $\lim_{x\to -1}(3x+1)=-2$.
Sketch in the complex plane all solutions of the equation $ z+2\mathrm{i} = z-3\mathrm{i} $. Question 7 - Limits Prove using the ε - δ definition of limit that $\lim_{x\to -1}(3x+1)=-2$.
Sketch in the complex plane all solutions of the equation $ z+2\mathrm{i} = z-3\mathrm{i} $. Question 7 - Limits Prove using the ε - δ definition of limit that $\lim_{x\to -1}(3x+1)=-2$.

SOWISO 2021 2

Question 8 - Continuity

Suppose that the function $f(x)$ is continuous on the closed interval [1,5] and that the only solutions of $f(x) = 2$ are: $x = 1$ and $x = 4$. If $f(2) = 4$, explain why $f(3) > 2$.
Question 9 - Differentiation rules
Let n be all the digits of your student number. Find the n-th derivative of $f(x) = x \cdot e^{-x}$.
Let n be all the digits of your student number. Find the n -th derivative of $f(x) = x \cdot e^{-x}$. Hint: prove first that $f^{(k)}(x) = (-1)^k \cdot (x-k) \cdot e^{-x}$ for any natural number $k \ge 1$.
Hint: prove first that $f^{(k)}(x) = (-1)^k \cdot (x-k) \cdot e^{-x}$ for any natural number $k \ge 1$.
Hint: prove first that $f^{(k)}(x) = (-1)^k \cdot (x-k) \cdot e^{-x}$ for any natural number $k \ge 1$.

SOWISO 2021 3